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ABSTRACT
Newton method is one of the most powerful methods for finding
solutions of nonlinear equations and for proving their existence. In its
‘pure’ form it has fast convergence near the solution, but small con-
vergence domain. On the other hand damped Newton method has
slower convergence rate, but weaker conditions on the initial point.
We provide new versions of Newton-like algorithms, resulting in
combinations of Newton and damped Newton method with special
step-size choice, and estimate its convergence domain. Under some
assumptions the convergence is global. Explicit complexity results
are also addressed. The adaptive version of the algorithm (with no
a priori constants knowledge) is presented. Themethod is applicable
for under-determined equations (withm< n,m being the number of
equations andnbeing thenumber of variables). The results are speci-
fied for systems of quadratic equations, for compositemappings and
for one-dimensional equations and inequalities.
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1. Introduction

Consider nonlinear equation

P(x) = 0, (1)

written via the vector function P : Rn→ R
m. There exists the huge bunch of literature

on solvability of such equations and numerical methods for their solution, see e.g. the
classical monographs [4,22]. One of the most powerful methods is Newton method, going
back to such giants as Newton, Cauchy, Fourier. The general form of the method is due to
Kantorovich [14]; on history and references see [5,15,26,33]. The basic version of Newton
method for (1) is applicable when P(x) is differentiable and P′(x) is invertible (this implies
m = n):

xk+1 = xk − P′(xk)−1P(xk). (2)

Themethod converges under some natural conditions, moreover it can be used for obtain-
ing existence theorems for the solution (see references cited above). Unfortunately Newton
method converges only locally: it requires a good initial approximation x0 (so called ‘hot
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2 B. POLYAK AND A. TREMBA

start’). Convergence conditions can be relaxed for damped Newton method

xk+1 = xk − αP′(xk)−1P(xk)
with 0 < α < 1.

The advanced, generalized writing of Newton method is

xk+1 = xk − αkzk, k = 0, 1, . . .

zk ∈ Arg min
z
{||z|| : P′(xk)z = P(xk)}. (3)

This variant relies on the solvability of the linear equation only, and it also admits non-
constant step-size. It is applicable to under-determined systems of equations (m<n) and
to non-linear equations in Banach space. The latter are outside of the scope of this paper
but its analysis is essentially the same.

If m = n and P′(xk)−1 exists, the method (3) coincides with classical Newton method
for αk = 1 and damped Newton method for αk = α < 1. Starting at some initial point x0
the latter method converges to x∗ under some additional constraints on residual ||P(x0)||
and function-related constants L, ρ, μ, α (see Theorems below for rigorous conditions).

In explicit form Newton method form �= n has been written by Ben-Israel [1]:

xk+1 = xk − P′(xk)†P(xk), (4)

where A† stands for Moore-Penrose pseudoinverse of A. However the results in [1]
are mostly oriented on over-determined systems, and the assumptions of the theorems
in [1] are hard to check. Other publications on under-determined equations include
[11,19,20,23,31].Moreover there exist numerous literature onmore general settings: equal-
ities plus inequalities [28,30], optimization problems [3,10] with more general algorithms,
which can be applied to solving of equations as particular case. In next Section 2 we discuss
the under-determined finite-dimensional case in more details.

There is a very similar problem statement to (1), made in terms of the equation with the
variable right-hand side

g(x) = y, (5)

with g : Rn→ R
m having a known solution x : g(x) = 0 and the variable y as a parameter.

The question is: forwhich right-hand side part y the equation is still feasible andwhat are
the solutions? This problem arises in finding image of amapping {g(x) : x ∈ R

n}, checking
robustness/sensitivity of a solution or exploration problem of the image, etc. In general,
this problem is hardly solvable, but we can provide local sufficient conditions of feasibility,
imposed on y.

Trivially, Equation (5) can be written in the form (1) with Py(x) = g(x)− y = 0 and
‖Py(x)‖ = ‖y‖. Thus conditions on feasibility of the equation Py(x) = 0 are exactly con-
ditions on feasibility (5) with respect to right-hand side y, and vice-versa.

Let us explain the connection between (1) and (5) deeper. There are few approaches
to treating feasibility of an equation. One of them is to prove existence of the solution by
providing semi-local existence theorems. These involve conditions in some point and/or
around it, and prove that if such conditions hold, then a solution exists. It is not necessary
to provide tools for finding this solution.
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Another way is to explore a constructive, algorithmic way of solving the equation, start-
ing at a point x0, resulting in a sequence {xk}, and prove convergence to a solution xk→ x∗
(e.g. fixed-point theorems). The convergence conditions are typically tied to the sequence,
including starting point x0. The conditions do not necessarily coincide with the conditions
of semi-local existence theorems. Moreover, the conditions ensuring faster convergence
of the algorithm are typically more strict, than the conditions of the semi-local existence
theorems.

In Newton method theory these approaches are closely connected, and semi-local the-
orems are often proved via convergence of variants of Newton method. We also show it
below in Theorem 3.2. This relation becomes very clear in comparison of Equations (1)
and (5). Naturally feasibility of (1) being solved by a Newton-like method (i.e. conver-
gence of the Newton method started at x0!) is stated in terms of norm of initial residual,
say ‖P(x0)‖ ≤ s. In terms of (5) the very same Newton-like method, being applied to
the constructed Py(·) and being started at the same point x = x0, converges for any fixed
y : ‖y‖ ≤ s. This analysis claims feasibility of (5) for all such y. Therefore finding the largest
set of possible y is essentially the same as the problem of finding the broadest residual range
P(x0). Without loss of generality, through the paper we assume x = 0, and switch between
problems (1) and (5) as equivalent ones. The difference is clear from context.

We also examine some special cases of the nonlinear equations. One of them is the
quadratic case, when all components of g are quadratic functions:

gi(x) = 1
2 (Aix, x)+ (bi, x), Ai = AT

i , bi ∈ R
n. (6)

In this case we try to specify above results and design the algorithms to check feasibility of
a vector y ∈ Rm.

The first goal of the present paper is to give explicit expressions of the method (3) for
various norms and to provide simple, easily checkable conditions for convergence of the
method. This also provides existence theorems: what is a feasible set Y such that y ∈ Y
implies solvability of (5).

The second goal is to develop constructive algorithms for choosing step-sizes αk to
achieve fast and as global as possible convergence. We suggest different strategies for con-
structing algorithms, study their properties and provide explicit convergence conditions
for the method and demonstrate its potentially global convergence.

The main contributions of the paper are threefold.

(1) We propose the novel procedure for adjusting step-size αk. The strategy guarantees
wide range of convergence (in some cases the algorithm converges globally) and fast
rate of convergence (local quadratic convergence, typical for pure Newton method).
Moreover explicit formula for method’s complexity is provided.

(2) The choice of norms in the algorithm can be different, thus we arrive to different ver-
sions of the algorithm. For instance, Euclidean norms imply explicit form of desired
direction zk (the same as in (4)) while �1 norm provides sparse approximations etc.

(3) We consider numerous applications, including under-determined cases, quadratic
equations, one equation with n variables.

Few words on comparison with known results. In the paper [23] results on solvability
of nonlinear equations in Banach spaces and on application of Newton-like methods have
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been formulated in semi-local form. One of the results from [23] adopted to our nota-
tion and finite-dimensional case claims that if P′(x) exists and is Lipschitz on a ball B of
radius ρ centred in x0 and estimate ||P′(x)Th||∗ ≥ μ||h||∗, μ > 0, ∀ h holds on B, then
Equation (1) has a solution x∗ provided ||P(x0)|| < ρ/μ. Another result deals with con-
vergence of Newton method; however the method is not provided in explicit form. The
condition on the derivative has extension to non-differentiable functions andmulti-valued
mapping an is known asmetric regularity, used for proving existence theorems in different
cases.

The paper, which contains the closest results to ours, is [20]. Nesterov addresses the
same problem (1) and his method (in our notation) has the form

xk+1 = xk − zk, k = 0, 1, . . .

zk = argmin
z
{||P(xk)− P′(xk)z|| +M||z||2},

whereM is the scalar parameter to be adjusted at each iteration. Nesterov’s assumptions are
close to ours and his results on solvability of equations and on convergence of the method
are similar. Themain difference is themethod itself; it is not clear how to solve the auxiliary
optimization problem in Nesterov’s method, while finding zk in our method can be imple-
mented in explicit form. Other papers on under-determined equations mentioned above
either do not specify the technique for solving the linearized auxiliary equation, or restrict
analysis with Euclidean norm and/or pure Newton step-size αk = 1, see e.g. [16,23,29,31].

The rest of the paper is organized as follows. Next section is introductory to the case of
under-determined systems. In Section 3 we remind few notions and results. Next, we prove
simple solvability conditions for (1). In main Section 4 we propose few variants of general
Newton algorithm (3), including adaptive ones and estimate their convergence rate. Some
particular cases (scalar equations and inequalities, quadratic equations, problemswith spe-
cial structure) are treated in Section 5. Results of numerical simulation are exhibited in
Section 6. Conclusion part finalizes the paper (Section 7).

2. Under-determined systems of equations

Under-determined equations attracted our attention by specific norm-dependency prop-
erty. In case ofm<n norms inR

n (in the optimization sub-problem) andR
m (for residual)

can be chosen arbitrarily, and they imply principally different forms and results of Newton
method (3). Conditions on solvability and convergence look similar, but the results differ
strongly.

Historically the case of under-determined equations (m<n) attracted much less atten-
tion than equationswith the samenumber of equations and variables. The pioneering result
is due to Graves [9] in more general setting of Banach spaces, for problem (5). Graves’
theorem for finite-dimensional case claims, that if condition

||g(xa)− g(xb)− A(xa − xb)|| ≤ C||xa − xb||

holds in the ball of radius ρ, centred at zero, for a matrix A with minimal singular value
μ > C > 0, then a solution of the Equation (5) exists provided ||y|| is small enough, namely
||y|| ≤ ρ(μ− C). The solution can be found via a version of modified Newton method,
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where next iteration requires solution of the linear equation with matrix A, see [6,18]
for details. The condition above gives rise to the mentioned metric regularity property.
However, finding the matrix A is still a problem itself.

First of all let us specify the subproblem of finding a vector zk in (3) for different norms
of x ∈ R

n. We skip simple verifications of the statements from convex analysis.

(1) For ||x|| = ||x||1 vector zk is a solution of the problem

min{||z||1 : P′(xk)z = P(xk)}.

(2) For ||x|| = ||x||∞ vector zk is a solution of the problem

min{||z||∞ : P′(xk)z = P(xk)}.

Both problems above can be easily reduced to linear programming.
(3) For ||x|| = ||x||2 vector zk can be written explicitly

zk = P′(xk)†P(xk).

In this case Newtonmethod (3) coincide with (4). Form ≤ nMoore-Penrose pseudo-
inverse of a matrix A is written as A† = AT(AAT)−1, if A has full row rank.

Thus in these (most important) cases algorithm (3) can be implemented effectively. Also
the solution of the first two problems may be non-unique.

An important case is the scalar one, i.e. m = 1. We specify general results for scalar
equations and inequalities; the arising algorithms have much in common with uncon-
strained minimization methods. Finally we discuss nonlinear equations having some
special structure. Then convergence results can be strongly enhanced.

3. Preliminaries and feasibility (existence) theorems

Key component in Newton method is the auxiliary convex optimization sub-problem,
involving the linear constraint. Note that the constraint

Az = b, b ∈ R
m, z ∈ R

n (7)

describes either a linear subspace, or the empty set. The classical result below (which goes
back toBanach, see [14,18,20]) guarantees solvability of the linear Equation (7) and gives an
estimate of its solution.Weprefer to provide the direct proof of the result because it is highly
clear and short in finite-dimensional case. Suppose that spaces R

n,Rm are equipped with
some norms, the dual norms are denoted || · ||∗ (for a linear functional c, associated with
the vector of the same dimension, ‖c‖∗ = supx:‖x‖=1(c, x)). Operator norm is subordinate
with the vector norms, e.g. for A : X→ Y we have ‖Ax‖Y ≤ ‖A‖X,Y‖x‖X . In most cases
we do not specify vector norms; dual norms are obvious from the context. The adjoint
operator A∗ is identified with matrix AT.
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Lemma 3.1: If A ∈ R
m×n satisfies condition

‖ATh‖∗ ≥ μ0‖h‖∗, μ0 > 0, (8)

for all h ∈ R
m, then Equation (7) has a solution for all b ∈ R

m, and all solutions of
optimization problem

ẑ ∈ Arg min{‖z‖ : Az = b}
have bounded norms ‖̂z‖ ≤ ‖b‖/μ0.

Proof: Fix b ∈ R
m and denote K = {x ∈ R

n : ||x|| ≤ ‖b‖/μ0}. This is a convex closed
bounded set, and its linear imageQ = {y ∈ R

m : y = Ax, x ∈ K} is convex closed bounded
set as well. Suppose b /∈ Q, then it can be strictly separated from Q: there exists
c ∈ R

m : maxy∈Q(c, y) < (c, b). But maxy∈Q(c, y) = maxx∈K(c,Ax) = maxx∈K(ATc, x) =
(‖b‖/μ0)‖ATc‖∗ ≥ ‖b‖ · ‖c‖∗, thus we get the contradiction: ‖b‖ · ‖c‖∗ < (c, b). Hence
b ∈ Q, i.e. there exists x ∈ R

n : Ax = b, ‖x‖ ≤ ||b||/μ0}. A solution with the least norm
obeys the same inequality. �

TheLemma is claiming that thematrixAhas full row rank equal tomprovided (8) holds.
It is another way to say that the mapping A : Rn→ R

m is onto mapping, i.e. covering all
image space. In the case of Euclidean norms, parameter μ0 is the smallest singular value
of the matrix μ0 = σm(A) (we denote singular values of a matrix in R

m×n in decreasing
order as σ1 ≥ σ2 ≥ . . . ≥ σm). In general case the conjugate operator A∗ is used instead of
AT, and μ is the metric regularity constant.

Some results below will exploit the sum of double exponentials functions Hk : [0, 1)→
R+, cf. [23]:

Hk(δ) =
∞∑
�=k

δ(2
�).

All functions Hk(·) are monotonically increasing and strictly convex. We also use two
specific constants

c1 = H0

(1
2

)
≈ 0.8164215,

and

c2 = max
0≤r≤ 1

4

2H0

(
1
2
− r
)
+ 5r − 4r2 − 2c1 ≈ 0.0036003. (9)

Trivial approximations

0 ≤ Hk(δ) ≤ δ(2
k)

1− δ(2k) =
1

δ−(2k) − 1
. (10)

may be used for polynomial lower and upper bounds of H0(δ) = δ + δ2 + δ4 + . . .+
δ(2

k−1) + Hk(δ) with arbitrary precision. We also use property Hk(δ
2) = Hk+1(δ).
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Below the problem of solvability of Equation (5) is addressed. We apply algorithm (3)
in the form

xk+1 = xk − αkzk, k = 0, 1, . . .

zk ∈ Arg min
z
{||z|| : g′(xk)z = g(xk)− y}. (11)

with small α and prove that the iterations converge while the limit point is a solution. This
technique follows the idea from [23]. Remind thatRn,Rm are equipped with some norms,
the dual norms are denoted || · ||∗.

Assumptions with respect to (5).

A. g(0) = 0 (i.e. x = 0), g(x) is differentiable in the ball B = {x ∈ R
n : ‖x‖ ≤ ρ}, and its

derivative g′(x) satisfies Lipschitz condition in B:

‖g′(xa)− g′(xb)‖ ≤ L‖xa − xb‖.

B. The following inequality holds for all x ∈ B and some fixed μ > 0:

‖g′(x)Th‖∗ ≥ μ‖h‖∗, ∀ h ∈ R
m.

C. ‖y‖ < μρ.

Theorem 3.2: If conditions A,B,C hold then there exists a solution x∗ of (5), and ‖x∗‖ ≤
‖y‖/μ.

Proof: We apply algorithm (11) with α > 0 small enough and x0 = 0. The algorithm is
well defined – condition B and Lemma 3.1 imply existence of solutions zk provided that
xk ∈ B; this is true for k = 0 and will be validated recurrently. Standard formula

g(x+ z) = g(x)+
∫ 1

0
g′(x+ tz)z dt

combined with condition A provides for x = xk, z = −αzk and uk = ‖g(xk)− y‖ recur-
rent relation

uk+1 ≤ |1− α|uk + Lα2

2
‖zk‖2.

Now condition B and Lemma 3.1 transform this estimate into

uk+1 ≤ |1− α|uk +
Lα2u2k
2μ2 .

Choose α = ε(2μ2(Lu0)−1
)(
1− u0(μρ)−1

)
with small ε < 1 satisfying 0 < α < 1; it

is possible due to condition C. From the above inequality we get uk+1 ≤ uk(1− α +
αε(uk/u0)(1− u0(μρ)−1). For k = 0 this implies u1 < u0 and recurrently uk+1 < uk. We
also get uk+1 ≤ quk, q = 1− α + αε(1− u0(μρ)−1) < 1. Thus uk ≤ qku0 and uk→ 0
for k→∞.
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On the other hand we have ‖xk+1 − xk‖ = α‖zk‖ < ‖zk‖ ≤ ‖g(xk)− y‖/μ = uk/μ ≤
qku0/μ. Hence for any k, s and for k→∞

‖xk+s − xk‖ ≤
k+s−1∑
i=k
‖xi+1 − xi‖ ≤ qk

u0
(1− q)μ

→ 0.

It means that xk is a Cauchy sequence and converges to some point x∗(ε). We had g(xk)→
y, thus continuity reasons imply g(x∗(ε)) = y. Now, for all iterations we got

‖xk − x0‖ = ‖xk‖ ≤
k−1∑
j=0
‖xj+1 − xj‖ ≤ α u0

μ(1− q)

= u0
μ

1
1− ε(1− u0

μρ
)
<

u0
μ

1
1− (1− u0

μρ
)
= ρ.

Hence all iterations xk remain in the ball B and our reasoning was correct. Finally under
‖xk‖ ≤ (u0/μ)/

(
1− ε(1− u0(μρ)−1)

)
we take ε→ 0, leading to ‖xk‖ ≤ u0/μ, so its

limit point x∗(ε)|ε→0. The limit point x∗(ε)|ε→0 = x∗ is a solution as well and ‖x∗‖ ≤
u0/μ. �

Corollary 3.3: If ρ = ∞ (that is conditions A,B hold on the entire space R
n) then

Equation (5) has a solution for an arbitrary right-hand side y.

It is worth noting that if we apply pure Newtonmethod (i.e. take αk ≡ 1), the conditions
of its convergence are more restrictive: we need ‖y‖ ≤ 2μ2/L, that is we guarantee only
local convergence even for ρ = ∞. This is a corollary of Newton-Mysovskikh theorem
[14], which proof is valid for under-determined case as well, cf. also [23].

Corollary 3.4: If m = n and Condition B is replaced with ‖g′(x)−1‖ ≤ 1/μ, x ∈ B, then
the statement of Theorem 3.2 holds true.

In this case our method (11) reduces to classical Newton method (2).
There exist numerous results on solvability of (5). Some of them are stronger than

Theorem 3.2 and are based on general notion of metric regularity [7,12]. We provided
the proof based on our technique to exhibit its applicability to existence theorems.

4. Main algorithms

Here it is more convenient to use the main equation in form (1). In previous Section we
proved solvability of equation by use of the algorithm with constant αk ≡ α > 0; choosing
α smaller we obtained larger solvability domain.

However, in this Section our goal is different – to reach the fastest convergence to a
solution. For this purpose different strategies for design of step-sizes are needed. The basic
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policy is as follows. First, we rewrite assumptions in new notation. We remark that the
assumptions in context of equation P(x) = 0 are very much the same as A,B.

A′. P(x) is differentiable in the ball B = {x ∈ R
n : ‖x− x0‖ ≤ ρ}, and its derivative

P′(x) satisfies Lipschitz condition in B:

‖P′(xa)− P′(xb)‖ ≤ L‖xa − xb‖.

B′. The following inequality holds for all x ∈ B and some μ > 0:

‖P′(x)Th‖∗ ≥ μ‖h‖∗, ∀ h ∈ R
m.

If A′,B′ hold true, we have the same recurrent inequalities for uk = ‖P(xk)‖:

uk+1 ≤ |1− αk|uk +
Lα2k‖zk‖2

2
, (12)

uk+1 ≤ |1− αk|uk +
Lα2ku

2
k

2μ2 , (13)

the second one being just continuation of the first one based on the estimate ‖zk‖ ≤ uk/μ,
compare with the calculations in the proof of Theorem 3.2. Now we can minimize right-
hand sides of these inequalities over αk; it is natural to expect that such choice of step-size
imply the fastest convergence of uk to zero and thus the fastest convergence of iterations
xk to the solution. One of the main contributions of this paper is careful analysis of the
resulting method.

If one applies such policy based on inequality (13), optimal α depends on μ, L
(Algorithm 1 below). The values are hard to estimate inmost applications, thus themethod
would be hard for implementation. Fortunately, we canmodify the algorithmusing param-
eter adjustment (Algorithm 2). On the other hand the same policy based on (12) requires
just the value of Lipschitz constant L, which is commonly available (Algorithm 3).

Thus we arrive to an algorithm which we call Newton method while in fact it is
blended pure Newtonwith damped Newtonwith special rule for damping. In some relation
it reminds Newton method for minimization of self-concordant functions [21]. Despite
its simplicity, the idea of minimizing upper bound seems to be unexplored (or long
forgotten) in Newton method theory with respect to equations. Authors found simi-
lar choice of step-size in [5], in different conditions and without explicit convergence
bounds.

4.1. Newtonmethodwith known constants

If both constants L and μ are known, then the step-size is taken as the minimizer of right-
hand side of (13):

αk = argmin
α

(
|1− α| · ‖P(xk)‖ + Lα2‖P(xk)‖2

2μ2

)
= min

{
1,

μ2

L‖P(xk)‖
}
. (14)
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Algorithm 1 (Basic Newton method)

zk ∈ Arg min
P′(xk)z=P(xk)

‖z‖,

xk+1 = xk −min
{
1,

μ2

L‖P(xk)‖
}
zk, k ≥ 0. (15)

The algorithm is well-defined, as soon ‖P(xk)‖ = 0 means that a solution is already
found (formally zk = 0, αk = 1 thereafter). We remind that in calculation of zk any vector
norm inR

n can be used, also any vector norm inR
m can be used for ‖P(xk)‖, and constants

L,μmust comply with these norms.
The update step in (15) can be written in less compact but more illustrative form:

xk+1 = xk − μ2

L‖P(xk)‖z
k, if ‖P(xk)‖ ≥ μ

2

L
(Stage 1 step),

xk+1 = xk − zk, otherwise (Stage 2 step).

The latter case is a pure Newton step while the primal one is a damped Newton step.
Direction zk calculation is the same in both stages. The result on convergence and rate of
convergence is given below. We use upper (�·�) and lower (�·�) rounding to integer; con-
stant c1 ≈ 0.8164 was introduced in Section 3. The theorem is followed by the corollary
with simpler statements.

Theorem 4.1: Suppose that Assumptions A′,B′ hold and

‖P(x0)‖ ≤ μ
2

L
Finv1

( L
μ
ρ
)
, (16)

where Finv1 (·) is the inverse function for the continuous strictly increasing function F1(w),
given by

F1(w) =

⎧⎪⎪⎨⎪⎪⎩
2H0

(w
2

)
, 0 ≤ w ≤ 1,

�2w� − 2+ 2H0

(
1
2
− �2w� − 2w

4

)
, w > 1.

(17a)

(17b)

Then the sequence {xk} generated by Algorithm 1 converges to a solution x∗ : P(x∗) = 0.
The values ‖P(xk)‖ are monotonically decreasing, and there are not more than

kmax = max
{
0,
⌈
2L
μ2 ‖P(x0)‖

⌉
− 2

}
(18)

iterations at Stage 1, then followed by Stage 2 steps. At k-th step the following estimates for
the rate of convergence hold:

‖P(xk)‖ ≤ ‖P(x0)‖ − μ
2

2L
k, k < kmax, (19a)
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‖xk − x∗‖ ≤ μ
L

(
kmax − k+ 2H0

(
w
2

))
, k < kmax, (19b)

‖P(xk)‖ ≤ 2μ2

L

(
w
2

)(2(k−kmax))

, k ≥ kmax, (19c)

‖xk − x∗‖ ≤ 2μ
L
Hk−kmax

(
w
2

)
, k ≥ kmax. (19d)

where w = (L/μ2)‖P(x0)‖ − kmax/2 = min{(L/μ2)‖P(x0)‖, 1− 1
2�2(L/μ2)‖P(x0)‖� +

(L/μ2)‖P(x0)‖} ∈ [0, 1).

The Theorem’s statementmay look quite involved, but both functionsH0(δ) and Finv1 (p)
are easily calculated in practice. In the interval of interest δ ∈ [0, 12 ], the former function
has rational approximation (10). The latter function can be evaluatedwith needed accuracy
via binary search, as soon F1(w) is monotonically increasing on R+.

Proof: Assume that all xk ∈ B, k ≥ 0. Below we state condition enabling this assumption.
Usingwk = (L/μ2)‖P(xk)‖ as the objective function, we rewrite (13)with generic step-size
α as

wk+1 ≤ |1− α|wk + 1
2
α2w2

k. (20)

Its optimum over α is at αk = 1/wk < 1, ifwk > 1; and αk = 1 otherwise; it is exactly (14).
During Stage 1 of dampedNewton steps (αk < 1), the objective functionmonotonically

decreases as

wk+1 ≤ wk − 1
2
. (21)

There are at most kmax = max{0, �2w0� − 2} iterations in the phase, say k ones, resulting
in wk ≤ 1. As soon wk reaches this unit threshold, the algorithm switches to Stage 2, pure
Newton steps. Then recurrent relation (20) becomes

wk+1 ≤ 1
2
w2
k, k ≥ k.

so we can write

wk+� ≤ 2
(wk
2

)(2�)
, � ≥ 0. (22)

For the second phase ‖xi+1 − xi‖ = ‖zi‖ ≤ ‖P(xi)‖/μ = (μ/L)wi due Lemma 3.1, and
for �2 ≥ �1 ≥ 0 holds

‖xk+�2 − xk+�1‖ ≤
�2−1∑
i=�1
‖xk+i+1 − xk+i‖ ≤ 2μ

L

(
H�1

(wk
2

)
− H�2

(wk
2

))
. (23)

The sequence {xk} is a Cauchy sequence becauseHj(wk/2) ≤ Hj(
1
2 )→j→∞ 0. It converges

to a point x∗ : ‖P(x∗)‖ = limk→∞ ‖P(xk)‖ = 0 due to continuity of P, with

‖xk+� − x∗‖ ≤ 2μ
L
H�
(wk
2

)
, � ≥ 0. (24)
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Next we are to estimate distance from points xk in Stage 1 to the limit solution point
x∗. One-step distance for k < k is bounded by a constant: ‖xk+1 − xk‖ = αk‖zk‖ ≤
αkwkμ/L = μ/L, and altogether

‖xk − x∗‖ ≤ ‖xk − x∗‖ +
k−1∑
i=k
‖xi+1 − xi‖ ≤ μ

L

(
k− k+ 2H0

(wk
2

))
, k < k. (25)

Note that the formula also coincides with the upper bound (24) at k = k. Exact number
k of the steps in the first phase is not known, but we can replace it with the upper bound
kmax in all estimates (21)–(25), due to monotonic decrease of {wk}. We also have an upper
bound forwkmax ≤ w = w0 − 1

2kmax = w0 − (max{0, �2w0� − 2})/2 ∈ [0, 1]. Substituting
wk = (L/μ2)‖P(xk)‖ back we arrive to Theorem 4.1 bounds (19).

Finally we are to check our primal assumption of the algorithm-generated points xk
being within B. This is guaranteed by one of two conditions, depending on whether the
Algorithm starts from Stage 1 step or Stage 2 step.

In the first case w0 > 1, and ‖x0 − xk‖ is bounded similarly to (25) as

‖x0 − xk‖ ≤
k−1∑
i=0
‖xi+1 − xi‖ ≤

k−1∑
i=0
‖xi+1 − xi‖ +

∞∑
i=k
‖xi+1 − xi‖ ≤

≤ μ
L

(
k+ 2H0

(wk
2

))
≤ μ

L

(
kmax + 2H0

(wkmax

2

))
≤

≤ μ
L

(
kmax + 2H0

(
w
2

))
= μ

L

(
�2w0� − 2+ 2H0

(
1
2
− �2w0� − 2w0

4

))
. (26)

Here we also used kmax = �2w0� − 2 > 0 and the upper boundwkmax ≤ w. In other words,
givenw0 = (L/μ2)‖P(x0)‖ > 1, for {xk} ∈ B it is sufficient to satisfy ρL/μ ≥ F1(w0). This
corresponds to (17b) part.

In the second case we have w0 ≤ 1, and the algorithm makes pure Newton steps with
αk ≡ 1 from the beginning. Then k = 0, wkmax = w0 and from (23) follows

‖xk − x0‖ ≤ 2μ
L

(
H0

(w0

2

)
−Hk

(w0

2

))
≤ 2μ

L
H0

(w0

2

)
, k ≥ 0.

Therefore if w0 ≤ 1, then inequality ‖x0 − xk‖ ≤ ρ, k ≥ 0 is satisfied if ρL/μ ≥
2H0(w0/2) = F1(w0). This corresponds to (17a) part.

Gluing the cases w0 ≤ 1 and w0 > 1 we arrive to the sufficient condition ρ ≥
(μ/L)F1

(
(L/μ2)‖P(x0)‖), resulting in xk ∈ B. Due to F1(w) being strictly increasing this

condition is equivalent to (16). �

Result on the rate of convergence means, roughly speaking, that after no more than
kmax iterations one has very fast (quadratic) convergence. For good initial approximations
kmax = 0, and pure Newton method steps are performed from the very start.
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Corollary 4.2: If ρ = ∞ (that is conditions A′,B′ hold on the entire space R
n), then

Algorithm 1 converges to a solution of (1) for any x0 ∈ R
n.

The following corollary provides simpler tight relaxed condition for Theorem 4.1. The
idea is to develop an upper bound for (17), resulting in a lower bound on (16).

Corollary 4.3: Condition (16) can be replaced with piece-wise linear one

‖P(x0)‖ ≤ μ
2

L
Finv,lower1

(
L
μ
ρ

)
= μ2

L
×

⎧⎪⎨⎪⎩
1

2(2c1 − 1)
L
μ
ρ, 0 ≤ ρ ≤ (2c1 − 1)

μ

L
,

L
2μ
ρ + 1− c1, ρ > (2c1 − 1)

μ

L
.

Proof: In order to find a lower bound for Finv1 (·), we are to prove an upper bound for the
function F1(w), (17). Both bounds are continuous strictly increasing functions. First we
notice, that both (17a) and (17b) coincide at w ∈ [ 12 , 1], and it can be rewritten through
the different junction point w = 1

2 instead of w = 1

F1(w) =

⎧⎪⎨⎪⎩
2H0

(w
2

)
, 0 ≤ w ≤ 1

2
,

�2w� − 2+ 2H0

(1
2
− �2w� − 2w

4

)
, w >

1
2
.

Due to convexity on interval [0, 12 ], function H0(δ) is bounded by a secant segment:

2H0

(w
2

)
≤ 2H0

(1
4

)
· (2w) = 2(2c1 − 1)w.

Here we used property H0(
1
4 ) = H0(

1
2 )− 1

2 , which follows from the identity Hk(x) =
x(2k) + Hk(x2), x ∈ [0, 1); and constant c1 = H0(

1
2 ) is introduced in Section 3.

Next we show that F1(w) ≤ 2(w+ c1 − 1) for w ≥ 1
2 . Indeed, following continu-

ous function is periodic on w, w ≥ 1
2 . It can be also written through the variable r =

(1+ 2w− �2w�)/2 ∈ (0, 12 ].

F1(w)− 2(w+ c1 − 1) = 2
(�2w� − 2w

2
+ H0

(1
2
− �2w� − 2w

4

)
−H0

(1
2

))
= 2

(
−r +H0

(
1
4
+ r

2

)
− H0

(
1
4

))
= 2

(
H0

(
1
4
+ r

2

)
−
(
H0

(
1
4

)
+ r
))
≤ 0. (27)

In the second row identity H0(
1
2 ) = 1

2 +H0(
1
4 ) is used. The last inequality is due to

convexity of H0(δ), which is under secant segment on corresponding interval [ 14 ,
1
2 ].
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Figure 1. Algorithm 1: function Finv1 (p) and lower bound Finv,lower1 (p) (left), residual Finv1 (p)−
Finv,lower1 (p) (right).

Thus we have the monotonically increasing piece-wise linear upper bound for (17)

F1(w) ≤ Fupper1 (w) =

⎧⎪⎨⎪⎩
2(2c1 − 1)w, 0 ≤ w ≤ 1

2
,

2(w+ c1 − 1), w >
1
2
.

Its inverse Finv,lower1 with property Finv,lower1 (Fupper1 (w)) ≡ w,w ≥ 0 is the piece-wise linear
lower bound for Finv1 :

Finv1 (p) ≥ Finv,lower1 (p) =

⎧⎪⎨⎪⎩
1

2(2c1 − 1)
p, 0 ≤ p ≤ 2c1 − 1,

p
2
+ 1− c1, p > 2c1 − 1.

Substituting back p = ρL/μ and w = (L/μ2)‖P(x0)‖ results in the Corollary statement.
�

On Figure 1 the bound and its residual are plotted. From the proof it is clear that the
bounds are tight.

The linear upper (lower) bounds of F1(·), Finv1 (·) for the intervalw ∈ [0, 12 ] were chosen
for consistency with linear bounds on w ∈ [ 12 ,∞). Bound residual on these two intervals
are also in the same order, cf. Figure 1. In Corollary 4.8 of Theorem 4.5 we present refined,
quadratic approximation for F1(w) = 2H0(w/2), w ≤ 1

2 .

Corollary 4.4: The upper bounds (19) may be simplified as well, using w ≤ 1 and thus
H0(w/2) ≤ H0(

1
2 ) = c1:

‖xk − x∗‖ ≤ μ
L
(kmax − k+ 2c1), k < kmax,

‖P(xk)‖ ≤ μ
2

L
1

2(2k−kmax )−1 , k ≥ kmax,

‖xk − x∗‖ ≤ 2μ
L
Hk−kmax

(1
2

)
≤ 2μ

L
1

2(2k−kmax ) − 1
, k ≥ kmax.
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4.2. Adaptive Newtonmethod

Presented Algorithm 1 explicitly uses two constants μ and L but both enter into the
algorithm as one parameter β = μ2/L. There is a simple modification allowing adaptively
change an estimate of the parameter.

Input of the algorithm is an initial point x0, the approximation β0 and the shrinkage
parameter 0 < q < 1.

Algorithm 2 (Adaptive Newton method)

1. Calculate

zk ∈ Arg min
P′(xk)z=P(xk)

‖z‖,

αk = min
{
1,

βk

‖P(xk)‖
}
,

uk+1 = ‖P(xk − αkzk)‖.
2. If either

αk < 1 and uk+1 < uk − βk2 ,

or

αk = 1 and uk+1 <
1
2βk

u2k,

holds, go to Step 4. Otherwise
3. apply update rule βk← qβk and return to Step 1 without

increasing the counter.
4. Take

xk+1 = xk − αkzk,
set βk+1 = βk, increase counter k← k+ 1, and go to Step 1.

Properties of Algorithm 2 are similar to Algorithm 1. We omit the formal proof
of convergence; it follows the lines of the proof of Theorem 4.1 with respect to the
properties:

• Algorithm 2 runs real steps at Step 4 and some number of fictitious steps resulting in
update rule Step 3;

• βk is non-increasing sequence;
• if βk < β (the actual constant of the objective function), then Step 3 won’t appear and
βk won’t decrease anymore. It means that there are atmost k̂ = max{0, �log1/q(β0/β)�}
check steps. Minimal possible value of βk is βmin = q̂kβ0, and the number of Stage 1
steps is limited by k̂max = max{0, �2‖P(x0)‖/βmin� − 2} as well;



16 B. POLYAK AND A. TREMBA

• if Step 4 is performed with βk > β due to validity of a condition in Step 2, then
‖P(xk+1)‖ decreasesmore than at the corresponding step with ‘optimal’ step-size αk =
min{1, β/‖P(xk)‖} (calculated with ‘true’ value β).

Let us mention two other versions of adaptive Newton method. The first one uses
increasing updates (e.g. βk+1 = q2βk with q2 > 1) in the end of Step 4, thus adapting the
constant to current xk. Also other decrease policies can be applied for βk in Step 3.

The alternative to the Algorithm 2 is line-search or Armijo-like rules for choosing
step-size αk to minimize objective function ‖P(xk − αzk)‖ directly. It is known that this
approach eventually leads to the quadratic convergence rate with pure Newton steps as
well, but without any estimates [2]. The difference between is the following: in the proposed
Algorithm2 parameterβ is beingmonotonically tuned to the global problem-specific value,
rather than trial-and-error procedure is performed at every iteration in the Armijo-like
approach. We compare the alternatives in Example 1.

4.3. Method for L known

Constant μ, used in Assumptions B,B′, is rarely accessible. As said in the beginning of the
section, we can use more accurate upper bound (12) instead of (13) for step-size choice. It
results in the algorithm, which uses the Lipschitz constant only. The optimal step-size in
this case is

α∗k = argmin
α

(
|1− α| · ‖P(xk)‖ + Lα2‖zk‖2

2

)
= min

{
1,
‖P(xk)‖
L‖zk‖2

}
. (28)

Algorithm 3 (L-Newton method)

zk ∈ Arg min
P′(xk)z=P(xk)

‖z‖,

xk+1 = xk −min
{
1,
‖P(xk)‖
L‖zk‖2

}
zk, k ≥ 0.

The algorithm is well-defined, as condition ‖zk‖ = 0 holds only if P(xk) = 0, i.e. a
solution was found at the previous step. Formally we put zk = 0, αk = 1 and xk+1 = xk
thereafter.

For the Algorithm we also present similar convergence theorem and set of corollar-
ies. We emphasize that while constant μ is still used in the bounds, Algorithm 3 does not
depend on it.

Theorem 4.5: Suppose that Assumptions A′,B′ hold and

‖P(x0)‖ ≤ μ
2

L
Finv2

( L
μ
ρ
)
, (29)
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where Finv2 (·) is the inverse function for the continuous strictly increasing function F1(w) given
by

F2(w) =

⎧⎪⎪⎨⎪⎪⎩
2H0

(w
2

)
, 0 ≤ w ≤ 1,

(�2w� − 2)(4w− �2w� + 3)
4

+ 2H0

(
1
2
− �2w� − 2w

4

)
, w > 1.

(30a)

(30b)

Then the sequence {xk} generated by Algorithm 3 converges to a solution x∗ : P(x∗) = 0. The
values ‖P(xk)‖ are monotonically decreasing, at k-th step the following estimates for the rate
of convergence hold:

‖P(xk)‖ ≤ ‖P(x0)‖ − μ
2

2L
k, k < kmax, (31a)

‖xk − x∗‖ ≤ μ
L

(
(4w0 − �2w0� + 3− k)(�2w0� − 2− k)

4
+ 2H0

(w
2

))
, k < kmax,

(31b)

‖P(xk)‖ ≤ 2μ2

L

(w
2

)(2(k−kmax))
, k ≥ kmax, (31c)

‖xk − x∗‖ ≤ 2μ
L
Hk−kmax

(w
2

)
, k ≥ kmax. (31d)

where w = (L/μ2)‖P(x0)‖ − kmax/2 = min{(L/μ2)‖P(x0)‖, 1− 1
2�2(L/μ2)‖P(x0)‖� +

(L/μ2)‖P(x0)‖} ∈ [0, 1).

For proving the theorem we need the simple proposition about real sequences.

Proposition 4.6: Consider two non-negative real sequences wk ≥ 0, vk ≥ 0, k ≥ 0, and
functions hk(v), f (v), k ≥ 0. Let f (·) bemonotonically increasing function, being also amajo-
rant function for hk(·) with respect to {wk}. Namely, we require hk(wk) ≤ f (wk). If w0 ≤ v0
and the sequences satisfy

wk+1 ≤ hk(wk),

vk+1 = f (vk),

then wk ≤ vk, k ≥ 0.

Theproposition is trivially proved by induction stepwk+1 ≤ hk(wk) ≤ f (wk) ≤ f (vk) =
vk+1.

The proof of Theorem 4.5 resembles the proof of Theorem 4.1, and it uses majoriza-
tion idea. Main issue is due to different step-size, now there is no clear separation between
damped and pure Newton steps.

Proof: Wecompare two discrete processes, both startingwith the same value v0 = w0. The
first sequence is generated by recurrent equality vk+1 = f (vk), where

f (v) = min
α

(
|1− α|v+ α

2

2
v2
)
=
{
v− 1

2 , v > 1,
1
2v

2, v ≤ 1,
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ismonotonically increasing function on v ≥ 0. The secondprocess iswk = (L/μ2)‖P(xk)‖,
with {xk} generated by Algorithm 3. Assume that all xk ∈ B and thus Assumptions A′,B′
hold. Then due to main inequality (12) and step-size (28)

wk+1 ≤ hk(wk) = min
α

(
|1− α|wk + α

2

2

(
L‖zk‖
μ

)2 )
.

Here we used ‖zk‖ in parametric part a2k ≥ 0 within introduced function hk(w) =
minα(|1− α|w+ a2kα

2/2). From ak = (L/μ)‖zk‖ ≤ (L/μ2)‖P(xk)‖ = wk by Assump-
tion B′, the functions |1− α|w+ a2kα

2/2 under minimization in hk(·) are majorized by
corresponding functions |1− α|v+ w2

kα
2/2 ≤ |1− α|v+ v2α2/2 for v ≥ wk. Minimums

of the functions over α (implicitly dependent on wk, v) also satisfy hk(v) ≤ f (v) whenever
v ≥ wk. It follows that hk(wk) ≤ f (wk).

Therefore sequences {wk} and {vk}, alongside with functions hk(·), f (·) satisfy Propo-
sition 4.6, given v0 = w0 = (L/μ2)‖P(x0)‖. Now we have upper bound on wk through vk
for all k ≥ 0. Next we closely follow the lines and calculations of the proof of Theorem 4.1.

Analysis of {vk} is the same as analysis of the upper bound in Theorem 4.1. First, vk
decreases, and the number of steps until vk reaches 1 is the same kmax, given by (18). Explicit
expressions on vk are

vk = v0 − 1
2
k, k ≤ kmax,

vk = 2
(vkmax

2

)(2k−kmax )
, k > kmax.

where vkmax = w = v0 − kmax/2 = min{w0, 1− (�2w0� − 2w0)/2} (remind that v0 = w0
by definition). These expressions result in the bounds (31a) and (31c) on ‖P(xk)‖, which
are the same as in Theorem 4.1.

For the late steps with k ≥ kmax we have wk ≤ vk ≤ 1, and thus αk = 1 (just because
‖P(xk)‖/(L‖zk‖2) ≥ μ2/(L‖P(xk)‖) = 1/wk ≥ 1). Then points xk, k ≥ kmax form a
Cauchy sequence like (23), and obey similar to (24) bound:

‖xkmax+� − x∗‖ ≤
∞∑
i=�
‖zkmax + i‖ ≤ μ

L

∞∑
i=�

wkmax + i

≤ μ
L

∞∑
i=�

vkmax + i = 2μ
L
H�
(
w
2

)
, � ≥ 0.

This is (31d) bound, by the way the same as (19d) of Theorem 4.1.
What is themain difference fromTheorem4.1 proof, is the distance counting until kmax-

th step. In this case we assume kmax = �2w0� − 2 > 0. Due to the Algorithm’s step-size
choice now we cannot be sure, whether α∗k be always less than 1 thereafter or not. For
i < kmax we have ‖xi+1 − xi‖ = α∗i ‖zi‖ ≤ ‖zi‖ ≤ ‖P(xi)‖/μ = wiμ/L ≤ viμ/L = (v0 −
1
2 i)μ/L, and arrive to (31b):

‖xk − x∗‖ ≤ ‖xkmax − x∗‖ +
kmax−1∑
i=k
‖xi+1 − xi‖
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≤ 2
μ

L
H0

(w
2

)
+ μ

L

kmax−1∑
i=k

(
v0 − 1

2
i
)

= μ

L

(
(4v0 − kmax + 1− k)(kmax − k)

4
+ 2H0

(w
2

))
= μ

L

(
(4w0 − �2w0� + 3− k)(�2w0� − 2− k)

4
+ 2H0

(w
2

))
.

In (31b) we used explicit formula for w = 1+ w0 − (�2w0�)/2 in case kmax > 0.
The last part of the proof is checking assumption xk ∈ B, i.e. ‖x0 − xk‖ ≤ ρ. From the

derivation of bound (31b) above we have

‖x0 − xk‖ ≤
k−1∑
i=0
‖xi+1 − xi‖ ≤

kmax−1∑
i=0
‖xi+1 − xi‖ +

∞∑
i=kmax

‖xi+1 − xi‖

≤ μ
L

(
(4w0 − �2w0� + 3)(�2w0� − 2)

4
+ 2H0

(w
2

))
, k ≥ 0,

in case kmax > 0, i.e. w0 ≥ 1, and ‖x0 − xk‖ ≤ (2μ/L)H0(w0/2) otherwise (from deriva-
tion of bound (31de)). Thus sufficient condition for xk ∈ B is

ρ ≥ μ
L
F2
( L
μ2 ‖P(x0)‖

)
,

which is equivalent to (29). �

Like for Algorithm 1, we can state few corollaries: on global convergence and some
simple bounds.

Corollary 4.7: If ρ = ∞ (that is conditions A′,B′ hold on the entire space R
n) then

Algorithm 3 converges to a solution of (1) for any x0 ∈ R
n.

There is a simpler tight relaxed condition for Theorem 4.5.

Corollary 4.8: Condition (29) can be replaced with

‖P(x0)‖ ≤ μ
2

L
Finv,lower2

( L
μ
ρ
)

= μ2

L
×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
4
− 2c3 +

√(
2c3 − 1

4

)2 + 2L
μ
ρ, 0 ≤ ρ ≤ c3

μ

L
,

−1
4
+
√

L
μ
ρ − c3 + 9

16
, ρ > c3

μ

L
,

where constant c3 = 2c1 + c2 − 1 ≈ 0.66885.
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The idea of the proof is the same as of Corollary 4.3: we derive upper bound
Fupper2 (w) for function F2(w) (30). Then the sufficient condition for points xk generated
by Algorithm 3 being inside B is ρ ≥ (μ/L)Fupper2

(
(L/μ2)‖P(x0)‖). Its inverse function

Finv,lower2 : Finv,lower2 (Fupper2 (w)) ≡ w,w ≥ 0 is a lower bound for Finv2 (·) then.

Proof: Notice that both components of F2(w) are the same in w ∈ [ 12 , 1], so

F2(w) =

⎧⎪⎨⎪⎩
2H0

(w
2

)
, 0 ≤ w ≤ 1

2
,

(�2w� − 2)(4w− �2w� + 3)
4

+ 2H0

(
1
2
− �2w� − 2w

4

)
, w >

1
2
.

Let’s begin with the case w > 1
2 . We introduce the auxiliary function r(w) =

(2w− �2w�)/4 ∈ (0, 14 ], related with the fractional part. This function is periodic on w,
and

F2(w) =
(
w+ 1

4

)2 + 2H0

(1
2
− r(w)

)
−
(5
4
− 2r(w)

)2
≤
(
w+ 1

4

)2 + 2c1 + c2 − 25
16

, w >
1
2
.

Here we used definition (9) of constant c2, introduced in Section 3.
By the definition of H(·) one can select terms up to quadratic in H0(δ) = δ +

δ2 +H2(δ), thus H2(
1
4 ) = H0(

1
4 )− 5

16 = H0(
1
2 )− 1

2 − 5
16 = c1 − 13

16 . From convexity we
have the upper linear bound for H2(δ) ≤ (4c1 − 13

4 )δ, δ ∈ [0, 14 ], and consequently for
2H0(w/2):

2H0

(w
2

)
= 2

w
2
+ 2

w2

4
+ 2H

(w
2

)
≤ w2

2
+
(
4c1 − 9

4

)
w

≤ w2

2
+
(
4c1 + 2c2 − 9

4

)
w, 0 ≤ w ≤ 1

2
.

In the last inequality wemanually added a small positive linear term 2c2w for continuity of
the resulting upper bound. Combining two parts, we arrive to the increasing continuous
upper bound for F2(·):

F2(w) ≤ Fupper2 (w) =

⎧⎪⎨⎪⎩
w2

2
+
(
4c1 + 2c2 − 9

4

)
w, 0 ≤ w ≤ 1

2
,(

w+ 1
4

)2 + 2c1 + c2 − 25
16

, w >
1
2
.

Using definition of c3 = Fupper2 ( 12 ) = 2c1 + c2 − 1, inverse of this function is the lower
bound for Finv2 (·)

Finv2 (p) ≥ Finv,lower2 (p) =

⎧⎪⎪⎨⎪⎪⎩
1
4
− 2c3 +

√(
2c3 − 1

4

)2 + 2p, 0 ≤ p ≤ c3,

−1
4
+
√
p− c3 + 9

16
, p > c3.

�
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Figure 2. Algorithm 3: residual of upper bound Fupper2 (w)− F2(w) (left) and residual of lower bound

Finv2 (p)− Finv,lower2 (p) (right).

The presented bounds are sharp and quite exact. Visually paired graphics of F2(w)
and Fupper2 (w), Finv2 (p) and Finv,lower2 (p) looks the same, and its residuals are plotted in
Figure 2.

Surprisingly enough, in practice the Algorithm 3 (and its adaptive modification) some-
times converges faster than Algorithm 1, possibly because direction-wise (along zk) Lips-
chitz constant is less or equal than uniform Lipschitz constant of Assumption A′, and the
convergence rate can be better.

The idea of adaptive algorithm with estimates Lk works as well for Algorithm 3;
including its modifications with increasing Lk.

4.4. Pure Newtonmethod

For comparison let us specify convergence conditions of pure Newton method
(αk = 1).

Theorem4.9: Let conditionsA′,B′ hold. If δ = (L/(2μ2)
)‖P(x0)‖ < 1 and (2μ/L)H0(δ) ≤

ρ, then pure Newton method converges to a solution x∗ of (1), and

‖P(xk)‖ ≤ 2μ2

L
δ(2

k), ‖xk − x∗‖ ≤ 2μ
L
Hk(δ).

It coincides with Corollary 1 of [23], proven in the Banach space setup (a misprint in
[23] is corrected here). For m = n case the result is a minor extension of Mysovskikh’s
theorem [14].

5. Special cases

In the sectionwe outline few important cases inmore detail, namely solving equations with
special structure, solving scalar equations or inequalities, solvability of quadratic equations.
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5.1. Structured problems

The problem is to solve equation g(x) = y where g(x)i = ϕ(cTi x), ci ∈ Rn, i = 1, . . .m.
Here ϕ(t) is a twice differentiable scalar function,

|ϕ′(t)| ≥ μϕ > 0, |ϕ′′(t)| ≤ Lϕ , ∀ t.

It is not hard to see that Assumptions A,B hold on the entire space R
n and Algorithm 1

converges, with Theorem 4.1 and Corollary 4.3 providing rate of convergence. The rate of
convergence depends on estimates forμ, L, which can bewritten as functions ofμϕ , Lϕ and
minimal and maximal singular values σmin, σmax of matrix C with columns ci (we suppose
that C has full rank, thus σmin > 0). Indeed after simple calculations (see expression for
g′(x) with C below) we get

L ≤ σ 2
maxLϕ , μ ≥ σminμϕ . (33)

However the special structure of the problem allows to get much sharper results. Let’s use
notation P(x) = g(x)− y. Indeed P′(x) = g′(x) = D(x)CT, D(x) = diag (ϕ′(cTi x)) and
repeating the proof of Theorem 3.2 we get the equality

P(xk+1) = |1− α|P(xk)− α
∫ 1

0
(Dt − D)CTzk dt, α ≥ 0,

where Dt = D(xk − αtzk),D = D(xk). Thus (recall uk = ‖P(xk)‖)

uk+1 ≤ |1− α|uk + α||CTzk||
∫ 1

0
||Dt − D|| dt ≤ |1− α|uk + Lϕα2||CTzk||2

2

Identity between spectral norm of a diagonal matrix and Euclidean norm of vector
on the diagonal is used in the last line, followed by element-wise Lipschitz prop-
erty of ϕ′(·): ‖Dt − D‖ = ‖[ϕ′(cTi (xk − αtzk))− ϕ′(cTi xk)]‖ ≤ ‖[|ϕ′(cTi (xk − αtzk))−
ϕ′(cTi xk)|]‖ ≤ ‖[Lϕαt|cTi zk|]‖ = Lϕαt‖[cTi zk]‖ = Lϕαt‖CTzk‖ for t ≥ 0. Thus

∫ 1
0 ||Dt −

D|| dt ≤ 1
2Lϕα‖CTzk‖.

But P′(xk)zk = P(xk), thus DCTzk = P(xk), CTzk = D−1P(xk) and hence ||CTzk|| ≤
uk/μϕ . We arrive to the inequality, very similar to (13), but with different constant γ

uk+1 ≤ |1− α|uk + γ
α2u2k
2

, γ = Lϕ
μ2
ϕ

.

Hence uk+1 ≤ uk − 1
2γ at Stage 1, thus this inequality does not depend on C! As the result

we get estimates for the rate of convergence which are the same for ill-conditioned and
well-conditioned matrices C. Of course this estimate is much better than standard one
with γ = (σmax/σmin)

2Lϕ/μ2
ϕ which follows from (33).

This example is just an illustrating one (explicit solution of the problem can be found
easily), but it emphasizes the role of special structure in equations to solve. Numerical
experiments with such problems are provided below, in Section 6.3.
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5.2. One-dimensional case

Suppose we solve one equation with n variables:

f (x) = 0, f : Rn→ R.

Here 0 is not a minimal value of f, thus it is not a minimization problem! Nevertheless, our
algorithms will remind some minimization methods. This case has some specific features
compared with arbitrarym. For instance calculation of zk may be done explicitly. Norm in
image space is absolute value | · |, and �p norms in pre-image space R

n, p ∈ {1, 2,∞} can
be considered. Then

zk = f (xk) sign (∇f (xk)i)
‖∇f (xk)‖∞

ei, i ∈ Arg max
i
|∇f (xk)i|, in case of �1−norm,

zk = f (xk)
‖∇f (xk)‖22

∇f (xk), in case of Euclidean norm,

zk = f (xk)
‖∇f (xk)‖1

sign (∇f (xk)), in case of �∞−norm,

where ej = (0, . . . , 0, 1, 0, . . . , 0)T is j-th orth vector, and sign (·) function is coordinate-
wise sign function, sign : Rn→ {−1, 1}n.

Constant μ (and μ0) are also calculated explicitly via conjugate (dual) vector norm as
μ = minx∈B ‖∇f (x)‖∗, μ0 = ‖∇f (x0)‖∗. For any norms ‖zk‖ = |f (xk)|/‖∇f (xk)‖∗, and
in Algorithm 3 damped Newton step is performed iff ‖∇f (xk)‖2∗ < L|f (xk)|, otherwise
pure Newton step is made.

If we choose �1 norm, the method becomes coordinate-wise one. Thus, if we start with
x0 = 0 and perform few steps (e.g. we are in the domain of attraction of pure Newton
algorithm) we arrive to a sparse solution of the equation.

In Euclidean case a Stage 1 step (damped Newton) of Algorithm 3 is

xk+1 = xk − 1
L
sign (f (xk))∇f (xk),

which is exactly gradient minimization step for function |f (xk)|. Stage 2 (pure Newton)
step is

xk+1 = xk − f (xk)
‖∇f (xk)‖22

∇f (xk).

This reminds well-known subgradient method for minimization of convex functions.
However in our case we do not assume any convexity properties, and the direction may
be either gradient or anti-gradient in contrast with minimization methods!

5.3. Quadratic equations

Proceed to a specific nonlinear equation, namely the quadratic one. Then the function g(x)
may be written componentwise as (6), with gradients

∇gi(x) = Aix+ bi ∈ R
n, i = 1, . . . ,m.

Obviously g(0) = 0, the question is solvability of g(x) = y. There are some results on
construction of the entire set of feasible points Y = {y : g(x) = y} = g(Rn), including
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its convexity, see e.g. [24]. We focus on local solvability, trying to derive the largest ball
inscribed in Y.

The derivative matrix g′(x) is formed row-wise as

g′(x) =

⎡⎢⎣∇g1(x)
T

...
∇gm(x)T

⎤⎥⎦ =
⎡⎢⎣ xTA1 + bT1

...
xTAm + bTm

⎤⎥⎦ ∈ R
m×n.

One has g′(0) = H, H beingm× nmatrix with rows bi. We supposeH has rankm (recall
thatm ≤ n), then its smallest singular value σmin(H) > 0 serves as μ0.

The derivative g′(x) is linear on x, thus it has uniform Lipschitz constant L on R
n, and

assumption A holds everywhere. There are several estimates for the Lipschitz constants,
for example (for �2 norm)

L ≤ L1 =
√√√√λmax

( m∑
i=1

AT
i Ai

)

from [25], where λmax is the maximal eigenvalue of a matrix. Other estimates can be
obtained via elaborate convex semidefinite optimization problem (SDP), cf. [32] for details.

Quadratic equations play significant role in power system analysis, because power flow
equations are quadratic, see [17]. It is of interest to compare our estimateswith some known
results on solvability of power flow equations [34].

5.4. Solving systems of inequalities

Below we address some tricks to convert systems of inequalities into systems of equations.
First, if one seeks a solution of a system of inequalities

gi(x) ≤ 0, i = 1, . . . ,m, x ∈ R
�,

then by introducing slack variables the problem is reduced to solution of the under-
determined system of equations

gi(x)+ x2�+i = 0, i = 1, . . . ,m, x ∈ R
n, n = �+m.

Similarly finding a feasible point for linear inequalities x ≥ 0,Ax = b, x ∈ R
n, b ∈ R

m can
be transformed to the under-determined system

n∑
j=1

Aijz2i = bi, i = 1, . . . ,m, z ∈ R
n.

The efficiency of such reductions is unclear a priori and should be checked by intensive
numerical study.
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6. Numerical tests

We have performed several experiments to check effectiveness of the proposed approach
for solving Equations (1) and to compare it with known ones.

The first two experiments relate to the classical case n = m, i.e. the number of vari-
ables equals the number of equations. Algorithm 2 with adaptive parameter estimation is
comparedwithwell-known ‘backstepping’ Armijo-like techniques for the dampedNewton
method. Namely, the competitor is the step-size proposed in [2].

γk = qj : ‖P(xk + qjzk)‖ ≤ (1− cqj)‖P(xk)‖ (34)

with some shrinkage parameter q ∈ (0, 1) and relaxation parameter c ∈ (0, 1). Thismethod
in some sense is similar to our Algorithm 2, but there are differences in step-size choice.

Two other examples relate to under-determined case, i.e. n>m. Example 3 is the illus-
tration how to employ structure of the data as explained in Subsection 5.1. We show that
such approach strongly accelerates convergence. Final Example 4 is an optimal control
problem. Exploiting L1 norms we construct sparse controls for the minimal-fuel problem.

6.1. Example 1

We studied the Fletcher–Powell system of equations [8]:
n∑
j=1

Aij sin xj + Bij cos xj = Ei, i = 1, 2, . . . , n (35)

for various dimensionsn. The data are generated as proposed in original paper [8]:matrices
A,B ∈ R

n×n are random, then for some x∗ ∈ R
n right-hand sides E ∈ R

n are calculated.
The arising system of equations may have many solutions, however we have the guarantee
that it is solvable. Then a set of 1000 initial points x0 were randomly sampled (multistart
policy). From each of the initial points, Newton algorithms were run with a) Armijo-kind
step-size (34), and b) β-adaptive algorithm (Algorithm 2). Parameters of the algorithms
were chosen as β0 = 100, q = 0.95, c = 0.8.

Each run has a ‘success’ or ‘fail’ result. ‘Success’ means that accuracy ||P(xk)|| < 10−8 is
achieved, while ‘failure’ is marked when either step-size threshold is γk < 10−13 attained
or maximal number of iterations (N = 10000) is performed. For each dimension n data
of algorithms’ outcomes were aggregated as following. For a random sample of equations
(there were 100 for each n) ‘success ratio’ rwas calculated among 1000 initial points as ratio
of success runs and total number of runs: Nsuccess/1000, both for Armijo-like approach
(rArmijo), and for our Algorithm 2 (rAlg. 2). To emphasize comparison, we used ratio of
ratios rAlg. 2/rArmijo as indicator. Then rAlg. 2/rArmijo values were imaged as the box-and-
whisker plot for all dimensions (Figure 3). Themiddle line in a (quartile) box is themedian,
whiskers’ lengths are set to 0.05 and 0.95 percentiles, outlier data is dot-plotted - as soon
there are 100 points (for each of the dimensions), there are exactly 5 upper and 5 lower
outliers).

We see that with high probability the ratio is larger than 1 for large dimensions. As a
conclusion, our method finds a solution more often than Armijo-like approach.

The similar analysis was done for the function calls. For each of the samples the num-
bers of function calls (these can be many in one Newton step) are averaged over initial
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Figure 3. Box-and-whisker plot for the ratios of success ratios rAlg. 2/rArmijo for all dimensions (Ex. 1).

Figure 4. Box-and-whisker plot for the ratios of function calls NArmijo/NAlg. 2 for all dimensions (Ex. 1).

conditions for all runs, resulting in values NAlg. 2,NArmijo. The ratios of the averaged
function calls for Armijo-like step-size (34) and Algorithm 2 (NArmijo/NAlg. 2) were aggre-
gated on the box-and-whisker plot on Figure 4. Typically Algorithm 2 admits much less
functions evaluations compared with Armijo-like algorithm.

6.2. Example 2

The original problem is equality-constrained optimization:

min
x:h(x)=0

f (x)

with scalar differentiable functions f, h, and x ∈ Rn. By use of Lagrange multiplier rule it is
reduced to the solution of equations

P(X) =
[∇f (x)+ ν∇h(x)

h(x)

]
= 0
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with new variable X = [xT, ν]T ∈ Rn+1. Note that we are interested at any solution of
these equations, that is we do not distinguish minimum points and stationary points. The
derivative is a block matrix

P′(X) =
[∇2f (x)+ ν∇2h(x) ∇h(x)

(∇h(x))T 0

]

We address the simplest case: minimization of a quadratic function (with symmetricA) on
Euclidean unit sphere:

min
||x||2=1

1
2
(Ax, x)+ (b, x)

Let the constraint be defined by h(x) = 1
2 (x, x)− 1

2 , then

P(X) =
[
Ax+ b+ νx
1
2x

Tx− 1
2

]
, P′(X) =

[
A+ νIn x

xT 0

]
. (36)

The experiment were run for different dimensions (n = 20, 25, 30, 35, 40, 45, 50). For each
dimension 100 problems were randomly generated, and 1000 initial points were randomly
chosen for each problem. Then Algorithm 2 and Armijo-like step-size algorithm (34) were
run as in the first example. The parameters and stopping criteria were the same as in Exam-
ple 1, except for the parameter q = 0.85, and number of Newton steps were bounded by
1000.MatrixA of the quadratic objective function is a positive semidefinitematrix, formed
as A = 1

2MMT. The auxiliary matrixM ∈ R
n×n+4 has coefficients, uniformly distributed

on [−0.9, 2.1]. Coefficients of the linear term bi are picked up from the scaled Gaussian
variables: bi ∼ 0.1N (0, 1). The initial conditions were chosen for the extended variable
X = [xT, ν]T as following:

• the first n components (x0, corresponding to the original variable x) are sampled from
the uniform distribution on Euclidean sphere with radius 1,

• the last, n+ 1 component (Lagrange multiplier ν) is chosen as the ‘best approximation’,
i.e. as theminimizer of the residual ‖P(X)‖2 = ‖Ax0 + b+ νx0‖2. The explicit solution
depends on the first n components (x0),

ν0 = −(x0)TAx0 − (x0)Tb.

Same as in Example 1, success ratios rArmijo, rAlg. 2 and number of function calls
NArmijo,NAlg. 2 were calculated (averaged over initial points). On Figure 5 the ratios of
rAlg. 2/rArmijo, and on Figure 6 the ratiosNArmijo/NAlg. 2 were gathered in box-and-whisker
plot.

Here it appears, that the success ration of Algorithm 2 prevails over Armijo-like
approach only at dimension 50 (still the ratio is about 1, meaning that both algorithms
behave quite similar); however, the average of function evaluations of our algorithm still
lower for all cases.
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Figure 5. Box-and-whisker plot for the ratios of success ratios rAlg. 2/rArmijo for all dimensions (Ex. 2).

Figure 6. Box-and-whisker plot for the ratios of function calls NArmijo/NAlg. 2 for all dimensions (Ex. 2).

6.3. Example 3

The problem is described in Section 5.1; it is to solve g(x) = y where g(x)i = ϕ(cTi x), ci ∈
Rn, i = 1, . . .m. Here ϕ(t) is twice differentiable scalar function,

|ϕ′(t)| ≥ μϕ > 0, |ϕ′′(t)| ≤ Lϕ , ∀ t.

It has been explained in Section 5.1 that the special structure of the problem allows to get
much sharper results.

Here we restrict ourselves with the single example to demonstrate how the methods
work for medium-size problems (n = 40, m = 21). The equations have special structure
as in Section 5.1:

Pi(x) = ϕ(cTi x− bi)− yi, x ∈ R
n, y ∈ R

m,
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where

ϕ(t) = t
1+ e−|t|

, ϕ′(t) = 1+ (1+ |t|)e−|t|
(1+ e−|t|)2

.

Matrix C with rows ci, vectors b, y were generated randomly. For function ϕ(t) we have
μϕ = maxt ϕ′(t) ≥ 0.5, Lϕ = maxt |ϕ′′(t)| ≤ 2 for all t. Thus if we do not pay attention to
the special structure of the problemwe haveμ ≥ 0.5σmin(C), L ≤ 2σmax(C). On the other
hand if we take into account the structure we can replace μ2/L (= 0.0012 in the example)
in Algorithm 1 (see Subsection 4.3) with μ2

ϕ/Lϕ = 0.125.
The results of simulations are as follows. When we apply Algorithm 1 with values

L,μ, it requires 6000 iterations to achieve the accuracy ||P(xk)|| < 10−12, while the same
algorithm with Lϕ ,μϕ requires just 70 iterations. The similar result holds for Algorithm
3: the version exploiting L requires 30 iterations, exploiting Lϕ - just 5 iterations. All algo-
rithms which are not based on information on these constants (pure Newton, adaptive
Algorithm 2) also converge in 5 iterations.

These results demonstrate how sensitive can be the proposed algorithms to a priori data
and to the special structure of equations.

6.4. Example 4.

This test is devoted to the underdetermined systems of equations and, specifically, sparsity
property, arising in optimal control problems. The behaviour of a pendulum with force
control u is given by the second-order differential equation

φ̈ + αφ̇ + β sinφ = u.

Figure 7. Solution with two-impulse control, [27].
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Given some initial condition φ(0), φ̇(0), the goal is to drive the pendulum to the specified
terminal position and angular speed [φ(T), φ̇(T)]T = b ∈ R

2 for the fixed time T. The
secondary goal is to have sparse control and the least control capacity

∫ T
0 |u(t)| dt.

The model was discretized on the interval [0,T]. The discretized control U has dimen-
sion N = T/h− 1, where h is the discretization step. The problem is to solve two equa-
tions [φd(T,U),ψd(T,U)]T = b, where φd,ψd are the discrete counterparts of φ, φ̇, in N
dimensional variable U.

The problemwas solved by exploiting Algorithm 2with specific choice of norm, namely
�1-norm. First, it represents a discretized control capacity (‖u‖ =∑N

i=0 |U(i)|). Second, it
is known for its property of finding sparse solution. The initial approximation was U = 0.
Newton method converges in 3 steps, resulting in 5 non-zero components of control (i.e.
the control should be applied at 5 time instants only). Moreover, the first Newton step
reveals 2 components (time instants), which are sufficient to get to the goal, see Figure 7.
Thus 2-impulse control (with impulses at t = 98 and t = 153) solves the problem.

Details on the simulation can be found in [27].

7. Conclusions and future research

New solvability conditions for under-determined equations (with wider solvability set)
are proposed. The algorithms for finding a solution are easy to implement, they combine
weaker assumptions on initial approximations and fast convergence rate. No convexity
assumptions are required. The algorithms have large flexibility in using prior information,
various norms and problem structure. It is worth mentioning that we do not try to con-
vert the problem into optimization one. Combination of damped/pure Newton method is
a contribution for solving classic n = m problems as well.

There are numerous directions for future research.

(1) We suppose that the auxiliary optimization problem for finding direction zk is solved
exactly. Of course an approximate solution of the sub-problem suffices.

(2) The algorithms provide a solution of the initial problemwhich is not specified a priori.
Sometimes we are interested in the solution closest to x0, i.e. minP(x)=0 ‖x− x0‖. An
algorithm for this purpose is of interest.

(3) More general theory of structured problems (Section 5.1) is needed.
(4) It is not obvious how to introduce regularization techniques into the algorithms.
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